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Abstract

This report presents ways of encoding database to database updates (DDUs) to minimize
communications bandwidth. The methods discussed are flexible and more easily extended than
bit-oriented protocols (BOPs). The strengths and weaknesses of DDUs and BOPs are discussed.
Typical DDUs are shown and the various data types sent in messages are explained. An analysis
is performed to empirically determine the savings obtained by using the encoding methods.
Finally, a-decoder that generates structured query language (SQL) DDUs is presented as an
example of the applicability of the algorithms to act as DDU translators.
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1. Introduction

Information distribution technology (IDT) is a long-term research project of the Commu-
nications and Network Systems Division of the Information Science and Technology Direc-
torate (IS&TD) of the U.S. Army Research Laboratory (ARL). The purpose of IDT research
is to develop new concepts for the exchange of digital data over the low-bandwidth, com-
bat net radio channels characteristically found on the tactical battlefield. These concepts
make use of the computational power of the modern digital computer and the tenets of
model-based battle command.

Model-based battle command is so named because each node on the battlefield maintains
a database or model of the battle space and uses automated distribution rules to transmit
information to specified destinations (Chamberlain 1995). Naturally, this leads to the infor-
mation being distributed in the form of database-to-database updates (DDU). A typical IDT
DDU is shown in figure 1. (Spaces and line breaks have been added to improve legibility.)

update Q"0x803f5f3c/0x23" grid {
east=407945; north=4368070;
time=72; owner=Q"0x803f5f3c/0x5"; }

Figure 1. Typical IDT DDU.

One of the first things that becomes immediately obvious is the large size of the aforemen-
tioned exchange, especially when compared to a typical message from a bit-oriented protocol
(BOP). The BOPs in use today are normally composed of messages that are often only 50
to a few hundred bits long; the sample DDU shown contains 89 bytes or 712 bits. DDUs
can match that brevity but only when considered as a set of messages that might be sent
over a period of time. To understand why, one must realize that BOPs obtain their terseness
by limiting the area of interest, quantizing the data fields into short lists of possible values
that are indexed by small integers, and using bit offsets within the message to indicate field
names. This limits the information that can be sent and requires that the entire message
be sent each time. The appendix shows the header for a combat vehicle command and con-
trol (CVC2) message (General Dynamics Land Systems 1991). This BOP was a precursor
to inter-vehicular information system (IVIS) (U.S. Armor School 1995) and is used to show
the flavor of bit-oriented messages.*

DDUs, on the other hand, use named fields that have numbers or strings as values. The
primary advantages of this technique are that the data values do not need to be quantized
to fit in the message format and only pertinent information needs to be sent. The latter fact
alone may result in considerable savings in bandwidth.

This report examines various ways of compacting messages for efficient transmission.
One extreme is the use of BOPs, where almost everything is sent as a coded value. Another

*A bit-oriented protocol defines a set of bit-oriented messages.



approach is to send DDUs, which are both terse and flexible but have a sizable amount of
overhead. Two ways of reducing the size of DDUs are also discussed, and typical messages
are examined.

2. Data Formats

2.1 Bit-Oriented Messages

The characteristics of bit-oriented messages that pose the most difficulty to tactical battle
command are

e the quantization of data fields,
e the necessity of sending an entire message, and

e the inflexibility and difficulty involved in updating or changing the protocol.

To obtain the short list of possible meanings for a particular field, it is necessary to limit
the precision. For example, suppose a system needs to store the current air temperature. It
is necessary to represent values from about —50° to 140°, a range of 190°. At least 8 bits
are needed to encode this range.* Alternatively, the temperature could be encoded with
the scheme shown in table 1. Using these enumerated values, it is no longer possible to tell
exactly what the temperature is. While the message contains an approximation of the value,
its size has been reduced from 8 to 3 bits.

Table 1. Encoded Temperatures

Temp. (°F) Description Code
Min. Max.

120 140 dangerously hot 7
100 119  real hot 6
85 99  hot 5
55 84 nice 4
32 54  cool 3
0 31 cold 2
—20 —1 real cold 1
—50 —21 dangerously cold 0

The message fields in BOPs are named by their offset from the beginning of the message.
This means that the entire message must be sent even if only a single field is being updated.
Sometimes the number of fields in a message may be modified because of a value in an earlier

*28 = 256, which is slightly larger than 190.



field; however, generally this is not done. The space savings in enumerating all field values is
partially offset by the requirement that all the fields be sent, regardless of the number that
actually contain new values.

Another problem with BOPs is the fact that each system defines its own mappings.
There are a lot of legacy systems in the field that cannot communicate with each other
(Hartwig 1995). It is almost as if each was speaking a different language.

For example, suppose the system that defined the previously mentioned temperature
codes needed to exchange information with a system that used the encoding scheme shown
in table 2. The temperatures have been uniformly divided into 25° ranges. If an application
was written to translate bit-oriented messages from one system to the other, how should
it work? With the exception of the extreme temperatures, every temperature range in one
system overlaps two or more ranges in the other system. Suppose the temperature was 42°.
The first system would encode that as the value “3” because it is in the 32-54° range. What
should the translator do with that value? Does it send it to the second system as code 3 or
4?7 There is no correct answer because the original value of 42 has been thrown away.

Table 2. Uniform Temperatures

Temp. (°F) Code

Min. Max.
125 149 7
100 124 6
75 99 )
50 74 4
25 49 3
0 24 2
—-25 ~1 1
-50 —-26 0

Even in the same system, there are communication problems because of extensions that
have been made to various bit-oriented messages. One application needs to be able to refer
to a certain type of platform, such as a rocket launcher. The second application, which is
using the same bit-oriented protocol, receives the message but does not have that code value
in its tables. Thus, it does not know what the message means.

2.2 Database Update Format

All messages in the workbench IDT system are sent as ASCII strings, surrounded by
a wrapper. This approach makes it very easy to monitor the system, and the body of a
message may be displayed or stored in a log file. However, such messages have two major
disadvantages—they are not efficient, and binary data (such as images) may not be sent
unless they are encoded in some way.



The smaller a message, the less bandwidth will be used. The IDT methodology of
sending database updates only when absolutely necessary already makes good use of the
limited bandwidth available to combat net radios. A typical DDU is shown in figure 1. This
message is saying that the grid fact whose unique factid is 0x803f5f3c/0x23 is located at the
point 407945, 4368070 at time 72. The grid is owned by fact 0x803f5{3¢c/0x5. This may seem
cryptic, but it is a message that is being passed between two computer applications, not two
humans. As presented to a human user, the message might appear as:

The current location of Alpha Unit is the UTM coordinates 407945, 4368070 at
the time 72 seconds into the mission.

The database update version is relatively terse and easily generated automatically by an
application. It may just as easily be broken apart at the receiving end and the components
stored in the database. However, it is keyword driven—the message contains pairs of field
names and values—and the keywords take up a lot of space.

One solution is to enumerate all the fields and send those numbers instead of the field
names. The obvious disadvantage is the fact that the receiver needs to know how the fields
are numbered (e.g., is “north” field 2 or field 8 in a grid fact). All databases are given
identical fact type definitions, so this problem goes away. If a database knows what a grid
fact is, then it can enumerate the fields and be in agreement with everyone else. In a similar
way, the various fact types must be assigned code numbers. Unlike the field types within a
fact, there is no structure that lists all the fact types in the database. These values would
be chosen a priori and distributed along with the fact type definitions.

A program was written in Perl (Wall, Christiansen, and Schwartz 1996) to test this idea.
Figure 2 shows the same grid message (fact code 1) as described previously. Field 00 (east)
has the value 407945, field 01 (north) equals 4368070, etc. In addition to enumerating the
fields and replacing them with two ASCII digits, the program also compacts factid values.
For example, @"0x803{5f3¢c/0x5" becomes 803f5{3c5. The database command update was
coded by the single character “u”.

uB03f5£3c23 1{00407945 ;014368070;0272; 15803f5f3c:5}
Figure 2. Enumerated ASCII Message.

Suppose the unit has not moved, and it is time for it to send a message saying that it is
still operational. The only field that has changed in its grid fact is the time, so an update
with just one field may be sent. Figure 3 shows the DDU and its enumerated message.

The second form of compression is to encode the values in a more compact manner. For
the program to properly decode a packed value, it must know what type of value it is. The
type is easily obtained from the fact definition. The definition for a grid fact is shown in
figure 4. Note that while the definition has 16 fields, only 4 of them were used in the example
update message. Bandwidth is conserved by sending only the values that have changed, not
the entire fact data structure.



update @"0x803f5f3c/0x23" grid {time=117;}

u803£5£3c23 1{02117}

Figure 3. Minimal Update Message.

define grid {

int east;
int north;
int time;
int soc_rad;
int deglat;
int minlat;
float seclat;
string hemilat;
int deglon;
int minlon;
float seclon;
string ° hemilon;
int terril;
int terr?;
int usage;

reference owner 3

}s
Figure 4. Grid Fact Definition.

3. Binary Encoding

3.1 Message Header

Every message contains a database command, a factid, and its type. All messages cur-
rently in use are either updates or rupdates. An update supplies new values for an existing
fact, while a rupdate creates a new fact with the initial values provided. The first picture in
figure 5 shows the format of a binary message header.

The first bit is set if the message is a binary sequence rather than the old-style ASCII
string. Since the high bit of all ASCII characters is zero, this approach is backward-
compatible with the current message format. An ASCII string will have a zero for the
first bit, which will tell the program to parse the message the old way.

The next bit is a mode bit to signify which of two binary coding schemes was used.
They are discussed in detail in the next subsection. Bits 3 and 4 are used to hold the
database command, allowing for four commands. Each additional bit doubles the number



header T 11 - BEREEEEE

M cmd factid fact number

enumerated fields ~ *** 4 | ! ! I XX I goeee

pad amt  field number; data,

usage bit vector °'°§ | so I soe | I §

usage bits data, data,

Figure 5. Binary Message Formats.

of commands, with negligible overhead. Since only two commands are used by existing
messages, two bits were felt to be enough. Next in the header is the factid of the fact being
updated. The format and number of bits required is described in section 3.3.3. The final
piece of information is a block of 5 bits that holds the code. A 5-bit number may store the
values 0-31, so this system could have up to 32 different fact types.

A message is made of bytes, while the encoded flags, counters, and values ignore byte
boundaries. Therefore, the end of the message must be padded with zeroes to fill the last
byte. The ramifications of this are discussed shortly.

3.2 Binary Message Types

As mentioned previously, there are two kinds of binary messages. Bit 2 of a binary
message is set (one) if binary enumerated fields are used and is zero if a usage bit vector
is supplied. The second picture in figure 5 shows the format for a binary enumerated field
message, and the third picture is a usage bit vector message.

3.2.1 Binary Enumerated Fields

ASCII enumerated fields have been previously discussed and shown in figures 2 and
3. With binary enumeration, each encoded value is preceded by 5 bits that hold the field
number. This allows each fact type to have a maximum of 32 fields.

Nothing in an enumerated message gives the total number of bits or the number of fields
in the message. The wrapper used by the fact exchange protocol (FEP)" does include the

*The FEP is the protocol developed for the workbench IDT system.



length of the message, so the decoder knows how many bytes are in the message. A block
of 3 bits is inserted between the fact number and the first field/value pair. It contains the
number of bits that should be ignored in the last byte of the message.

3.2.2 Usage Bit Vector

A usage bit vector is a block of bits, one for each field of the fact definition. The left-
most bit corresponds to field zero, the next to field one, and so on, until all the fields have
a placeholder. If the bit is set, it means there is a value in the message for that field. The
usage vector appears after the fact type number.

The decoder knows how many values are in the message; it is the same as the number
of bits set in the usage vector. Since the number of bits used by the encoded values may be
determined from the fact types (as with enumerated fields), the decoder does not need to
be explicitly told the number of padding bits. It will stop decoding the message when it has
processed all the fields.

3.3 Field Types

Field types are divided into two categories: simple and complex. Simple fields may vary
slightly in size but only between fixed bounds. Complex fields encode their size and will
appear in multiple blocks if they exceed the “maximum” length. This is explained in detail
in section 3.3.4. The three simple and two complex formats are shown in figures 6 and 7,
respectively.

floae | | | | |

facid | ] [ [ ] i[ .-

4 bytes len 1— 4 bytes

Figure 6. Simple Data Types.

3.3.1 Float

Floating-point numbers are the easiest values to encode. They always consist of 4 bytes
(32 bits) and no special processing is required. They are denoted by float in a fact definition.



3.3.2 Integer

Integers (int) are also stored in the computer in 4 bytes. However, while the float format
always uses 4 bytes, an integer is padded to the left with zeroes. The number may be
compressed by sending as few bytes as needed. A single byte is used for the values 0-255,
two bytes for 256-65535, etc. Therefore, 2 bits are prepended to each integer to tell how
many additional bytes (beyond the minimum of one) are used to encode the number. In
other words, the bits 00 mean a 1-byte integer follows, 01 means 2 bytes, 10 means 3 bytes,
and 11 is used for 4 bytes.

Negative integers are a special case. Because of sign extension, all 4 bytes are always
used internally. Rather than send 32 bits for a small value like —17, a signed format is used.
A sign bit in front of the length bits is set if the number is negative, and the absolute value
of the integer is encoded in the value bytes. The value —42 would require 32 bits if the
internal format was sent but only 11 bits (1 00 00101010) with the described method.

3.3.3 Factid

All factids (type reference) in the entire system must be unique. This was achieved by
splitting a factid into two parts—a host and a counter—each half containing 4 bytes or
32 bits. The hostid in the workbench system is the computer’s Internet address, which is
a unique 32-bit value. Each computer keeps its own counter and increments whenever it
creates a new fact. The combination of hostid and counter is therefore a unique value.

All 64 bits could blindly be sent, but the counter portion is like an integer, and thus
the same compression may be used.* A factid is encoded as 4 bytes, 2 length bits, and 1-4
additional bytes, for a total of 42 to 66 bits.

sting | 1 o4 | I_'_'.'.J
length 1— 255 chars

TES I I 0 IR IEE TS
type length 1— 31 items

Figure 7. Complex Data Types.

3.3.4 String

A string is a sequence of 7-bit characters. There is no arbitrary limit to how long a string
may be, except a null or empty string is never used in a message.!

*Of course, the sign bit is not needed.
tRather than set a field to a null string, the application would delete the field.



As shown in figure 7, the encoded string is preceded by its length, which is stored in
8 bits. This allows a maximum string length of 255 characters, which is more than adequate
for the messages being sent by current applications. However, there may be times when a
larger string must be transmitted. In that case, the length bits will have the value zero. The
first 255 characters of the string will be encoded, followed by another substring consisting of
8 length bits and some number of characters. The pattern will repeat until the entire string
has been encoded.

The string itself will be packed when it is encoded. ASCII characters are 7-bit values, yet
are stored internally in 8-bit bytes. Space may be saved in the binary message by throwing
away the high bit (which is always zero) and encoding the remaining 7 bits. For example, if a
string has a length of 9 characters, it requires 9 bytes or 72 bits internally (plus a terminating
byte of zeroes, which may be ignored). The same string encoded in a message would have
an 8-bit length prefix (containing the value 9) and 9 X 7 or 63 bits, for a total of 71 bits in
the message.

3.3.5 List

Strictly speaking, a list is not a type but a container of other types. It is used in a fact
definition when it is not known in advance how many fields may be needed in a fact, similar
to the way it is impossible to predict how long a string will be. For example, a unit fact has
exactly one superior, but may have any number of subordinate units.

The database would be more robust if there were subtypes of lists, such as list_int and
list _reference. Instead, it is the responsibility of the application that accesses the list field to
know what type of data it contains. While it is possible for a list to contain values of more
than one type at the same time, the binary encoder assumes all lists are homogeneous.

The encoder does the same thing the current list processor does. It examines each value
in the list and determines its type. With only four different types to choose from, this is a
simple task. The format of a list consists of 3 bits that denote the type of the list; like the
fact codes, the numbers are defined manually. The rest of the list format is identical to the
string format, except only 5 bits are used for the list length. If the list contains more than
31 items, a zero length and the first 31 items are encoded, followed by a second sublist and
group of values, etc.

If it is decided that mixed-type lists are going to be employed, then each value in the
list will be prefixed by its type. This is a lot of overhead. An alternative would be to have
a flag bit that is set if the list is uniform, in which case the type code would appear only
once. If the binary message encoder/decoder is implemented in the FEP, lists will probably
be redesigned both in the messages and in the database itself.

3.3.6 Binary Data

The database cannot directly store arbitrary binary data such as images. They must be
converted to ASCII data and stored in strings in a process similar to the way a string is



decoded from a binary message. Binary data could be stored in the database as a sequence
of bytes, plus an integer stating the number of bytes. A binary field in a message would
be identical to a string, except more than 8 bits would be used for the length (binary data
tends to be quite large) and there would be no packing of the data.

4. Analysis

4.1 General Comments

It is impossible to state what compression ratios the two binary schemes described will
achieve. However, some general comments may be made before some empirical results are
discussed. These comments apply to the ASCII messages currently being used, not the
refined ASCII enumerated field format presented in section 2.2.

4.2 Header

A message always starts with a database command, a factid, and the name of a fact
type. The command string is either update or rupdate, which is 6 or 7 characters (bytes)
long, respectively. A typical factid is of the form @"0xHHHHHHHH/OxHH", although the counter
portion could be 4-8 hexadecimal digits instead of 2. There are 8 hex digits for the hostid, 2 or
4 for the counter, and 8 more characters (@"0x. ../0x") to tell the database and applications
that this is a factid. The name of the fact is like any other programming variable. It should
be long enough to be understandable, yet short enough to be reasonable. The fact types in
the current system range from 3 to 10 characters in length, with 7 or 8 being a typical value.
The ASCII header of a message thus contains from 27 to 41 characters, with a typical value
of about 32 characters or 256 bits.

In contrast to this, a binary header starts with 2 mode bits and 2 command bits. The
factid will be either 42, 50, 58, or 66 bits. The fact type code is always 5 bits. Padding must
be added to the end of the message and ranges from 0 to 7 bits. A binary header therefore
contains 51, 59, 67, or 75 bits, plus padding, or 7 to 10 bytes. The typical value is about
55 bits, or 7 bytes. In the header alone, the compression ratio may exceed 4:1.

4.2.1 Binary Enumerated Fields

An enumerated field message starts with 3 bits to encode the amount of padding at the
end of the message. The length of the field names in the current database varies from 1 to 12
characters, with an average length of about 6 characters. The field name is separated from
the field value by an equals sign, and the pair is terminated with a semicolon, adding two
more bytes to the length of each field/value pair. Each field is identified by 5 bits instead
of the 64 bits on average required by the ASCII message. The average savings is therefore
64n vs. 3 + dn, or about 10:1.

10



4.2.2 Usage Bit Vector

The bit vector format does away with the three padding length bits. It also eliminates
the repeating 5-bit prefix to each value, replacing all of the prefixes with a single vector. The
current fact types contain from 3 to 22 fields, meaning each bit vector contains 3-22 bits.
If an average fact contains 10 fields and a message updates 5 fields, then the savings is
64 x 5 vs. 10 or 30:1.

4.3 Values

It appears as though converting the ASCII messages to binary will save a tremendous
amount of bandwidth. The savings so far have been obtained by replacing ASCII strings
(fact and field names) with either very small numbers or a single large bit vector. As this
subsection explains, encoding values into a binary message is not nearly as efficient.

4.3.1 Float

A floating-point number is always encoded as 4 bytes. Any number whose ASCII rep-
resentation is more than 4 characters will be compressed (e.g., 3.14159, -18.62). For a
compression ratio of only 2:1, the number must have 8 characters.

4.3.2 Integer

The size of an encoded integer may be 11, 19, 27, or 35 bits. Unlike a float, the value
of an integer is just as important as the number of ASCII characters needed to represent
it. The 3-character number 255 is encoded in 11 bits (2.2:1), while 256, which also has 3
characters, requires 19 bits (1.3:1). Generally speaking, the “longer” the number, the better
the compression ratio. The integer -12345678 needs 27 bits instead of 72 or 2.7:1.

4.3.3 Factid

A typical factid, such as @"0x803£5£3c/0x23", is 18 characters long (144 bits) and may
be encoded in 42 bits. This is a compression ratio of 3.4:1. The worst case is a counter
greater than 16,777,215, which drops the ratio to 2.9:1.

4.3.4 String

The simple packing method used to encode strings results in an 8:7 or 1.14:1 compression
ratio for the characters making up the string. An additional byte is required to signify the
length of the string; however, it replaces the double quotes that surround strings in the
current message format. A string made of a single character (e.g., ""S") is 24 bits long and

11



is encoded in 15 bits; a 255-character string encodes as 1793 bits; and a 256-character string
requires 1809 bits. The compression ratios are 1.6:1, 1.15:1, and 1.14:1, respectively. The
longer the string, the closer it approaches the limit of 8:7.

4.3.5 List

It is difficult to generate numbers for list compression because it depends on what type
of values the list contains. A search of the current fact type definitions shows that nearly all
the lists contain factids. This is to be expected because a list frequently contains subordinate
components that are other facts in the database. Figure 8 contains a message with a list
field. The fact type line has a field that contains the list of line segments that make up the
line.

update 0"0x803f5f3c/0x20" line {stime=0; etime=524;
type=1; usage=4; name="amber"; user=Q"0x803f5f3¢c/0x5";
line_seg=[0"0x803f5f3c/0x14" Q@"0x803f5f3c/0x15"
Q@"0x803f5f3c/0x16" @"0x803f5f3c/0x17" @"0x803f5f3c/0x18"
@"0x803f5f3c/0x19" @"0x803f5f3c/0x1a" ©"0x803f5f3c/0x1b"
0"0x803f5f3c/0x1c" @"0x803f5f3c/0x1d" @"0x803f5 £3c/0xle"];}

Figure 8. IDT DDU With a List Field.

The list is surrounded by brackets (to tell the receiving database that a list is being
sent), and the items are separated by spaces. The overhead for a list is thus n + 1 bytes or
8 x (n + 1) bits. In the binary message, the overhead is 8 bits for a list of 1 to 31 items,
13 bits for 32 to 63 items, and so on. The compression ratio for the list overhead ranges
from 2:1 for a list of only one item to 32:1 for 31 items, 20:1 for 32 items, and 39:1 for 63
items. However, like the total message overhead, the list overhead is insignificant compared
to the size of the list values. The compression ratio of the example is 1680 bits vs. 470 bits,
or 3.6:1.

4.3.6 Binary Data

Binary data would be encoded in a message as is with an integer holding its length
preceding it. There would be no savings unless some kind of binary compression scheme was
used. Currently, binary data must be encoded as ASCII data using a 6:8 expansion ratio.
Packing the resultant ASCII string into a message would reduce the expansion to 6:7.

12



4.4 Empirical Results

The compression algorithms were implemented as Perl programs and applied to various
actual messages, both to determine the space savings and to show the ideas work.” Some
messages were from a battlefield simulation, while others were constructed directly from
facts stored in the database. The messages are presented in figure 9, and the message sizes
and ratios are in table 3.

update Q"0x803f5f3c/0x22" sync {command=1; time=871580009;
index=0; rate=1;}

update Q"0x803f5f3c/0x21" dist_vars {thresh=2; host=@"0x803f5f3c/0x5";
cmd=©"0x803f5f3c/0x5”;}

update Q"0x803f5£3c/0x5" unit_type {plan_loc=@"0x803f5£f3c/0x23";
act_loc=Q@"0x803f5f3c/0x24"; name="Alpha Unit";
cur.rt=0"0x803£f5£3c/0x20"; plans=[Q"0x803f5f3c/0x20"];}

update Q"0x803f5f3c/0x20" line {stime=0; etime=524; type=1;
usage=4; name="amber"; user=Q"0x803f5f3c/0x5";
line_seg=[Q"0x803f5f3c/0x14" @"0x803f5f3c/0x15" @"0x803f5f3c/0x16"
Q"0x803f5f3c/0x17" @"0x803f5£3c/0x18" @'"0x803f5f3c/0x19"
Q@"0x803f5f3c/0x1a" @"0x803f5£f3¢c/0x1b" @"0x803f5f3c/0x1c"
@"0x803f5f3c/0x1d" @"0x803f5f3c/0x1e" @"0x803£5£3c/0x1£"];}

update Q"0x803£5£f3c/0x14" line_seg {sgrid=0@"0x803£f5f3c/0x7";
egrid=0"0x803f5f3c/0x8"; radius=100;}

update @"0x803f5f3c/0x23" grid {east=407945; north=4368070; time=72;
soc.rad=100; usage=-3; owner=Q"0x803f5f3c/0x5"; }

rupdate @"0x803f5f43/0x5" sensing {desc="HOKM”; wd=2; tv=1; att=211;
zhour=47600; sym="T1xxxMmHTRW.H211"; speed=170; east=52000;
north=7000; num=1; window=["R1"]; dir=2862; len=200; mode=19;}

rupdate Q"0x803f5f48/0xlal" target {numi1=36; active=1;
tgtnum="09040.1"; rds1=0"0xc0051725/0xb6";
tgt=0"0x803£5£48/0x179"; unit=0"0xc0051725/0x846";}

Figure 9. Actual Messages.

4.4.1 ASCII Enumerated Fields

The savings in the enumerated ASCII message are fairly minor, as expected. Integers
and floats remain the same, and strings lose only two characters (the double quotes). Lists
remain unchanged because the receiving database needs to be told what type of values the

*All messages were successfully decoded into their original forms.
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Table 3. Message Sizes and Ratios

ASCII | ASCII Enum | Enumerated Bit Vector
Length | Bytes Ratio | Bytes Ratio | Bytes Ratio

70 38 1.8 18 3.9 16 4.4
89 42 2.1 21 4.2 20 4.5
160 89 1.8 42 3.8 42 3.8
338 284 1.2 93 3.6 89 3.8
93 44 2.1 21 4.4 19 4.9
109 61 1.8 27 4.0 25 4.4
175 114 1.2 58 3.0 32 3.4
141 76 1.9 40 3.5 37 3.8

list contains. The type could have been coded in a single digit, allowing the values to be
encoded where possible. However, the list would still require separators and delimiters. If
this is done with the message containing the list of factids, the compression ratio climbs from
1.2 to 1.8, which matches the other messages.

The real savings are with factids, which drop by almost a factor of 2, and in the message
overhead. The database command becomes a single character; the fact type is represented
by a one or two digit number; and all field names, regardless of their lengths, are replaced
by two digits.

On the other hand, the compression is not that good. The average ratio is under 2:1, and
binary data may not be sent. Additional refinements, such as performing Huffman coding
on the encoded ASCII message, would further reduce the message size.

4.4.2 Binary Enumerated Fields

Encoding the message in binary drops the final message size by another factor of 2, or
an average compression ratio of almost 4:1. This method has all the advantages of the
ASCII enumerated fields (with better ratios), plus it compresses all values as explained in
section 4.3.

4.4.3 Usage Bit Vector

Replacing the 5 bits encoding each field name with a single bit vector reduces each
message by 0-6 bytes. The best savings are in messages that contains several fields; the least
are with messages that have few fields for facts that contain many fields. The number of
bits used with enumeration is 3 + 5n vs. a fixed size for the bit vector. If n is small and the
bit vector is long, very little (if anything) is gained.
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4.4.4 Message Sizes

What is really important is not the compression ratio, per se, but the size of the message
that is transmitted. A better compression algorithm results in a smaller message, as does
more refinement in the way a message is constructed. A multipage text message describing
an action on the battlefield may be reduced, using traditional text compression algorithms,
to half or even a third of its original size, but it is still a large message that requires manual
interpretation by the person who receives it.

Database updates are succinct. The sample messages are all 70-150 bytes long (with
one major exception) and may be compressed into binary messages of 16-60 bytes. The
exception is a message with a large list of values, and, even so, it is only 90 bytes long.
These sizes are comparable to BOPs.

5. Further Enhancements

The data type with the worst compression ratio is the string. Using a standard text
compression algorithm like Huffman or arithmetic coding would reduce the number of bits
needed to send the string in a message. As with all optimization techniques, the data must
be analyzed to make sure it is worth the effort. If most strings that are sent are fairly short,
such as unit names, then the additional savings could be insignificant. An abundance of
large text messages could mean that more fact types or fields are needed. Also, compressing
and expanding the strings may be very costly in time and computational power.

The database command is transmitted as a code value. Both the sender and receiver must
have a table to encode and decode the command. The formats discussed here allow 2 bits
to store the command, which limits the system to only four commands. If new commands
are added, the entire format must be changed.

Likewise, entire concepts may be enumerated and sent as messages, which is the basis
for bit-oriented protocols. The more this is done, the smaller the message may be made,
at least in theory. In practice, what happens is very specific messages are created for var-
ious applications. These messages are so tightly coupled to the applications that they are
incompatible with other systems that have their own sets of messages and codes.

As mentioned previously, BOPs require that all the fields are sent in a given message,
even if some of the values have not changed. The message does not shrink if fewer fields are
needed. The result is like a usage bit vector message without the bit vector and a value for
every field in the fact type.

Perhaps it would be possible, in certain circumstances, to leave off the hostid part of a
factid. The values in a fact may all refer to the same hostid, as is the case with most of the
examples in figure 9. A flag bit could be reserved in the message header; if the bit is set,
then all factids have the same host as the factid in the header. Such a scheme may cross
the line between efficiency and confusion. Is it really necessary to compress messages any
further than the 4:1 ratio?
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Including binary data in a message may not be as simple as it appears. Strings are
relatively short and are easily included in a message. Binary data, especially images, tend
to be very large, even with current image-compression techniques. The protocol being used
to send the messages allows several messages to be packed and sent out together. A large
binary image would have to be split apart and sent as several packets. These messages
may arrive at their destination in the wrong order and must be reassembled correctly. This
implies more overhead for binary fields and possibly changes to the fact exchange protocol.

If a bit is assigned the wrong value in an ASCII message, the error might be easily
detected. For example, changing a single bit from 0 to 1 turns the digit “6” into the letter
“y”. With a binary message, an incorrect or dropped bit may drastically affect the meaning
of the entire message. Forward error correction codes must be included in the protocol to
ensure that messages are not corrupted by the transmission process. This adds still more
overhead to the message, a problem that is common to all protocols that perform binary
compression, such as BOPs.

6. Conclusions

Communications bandwidth on the battlefield is severely limited, requiring digital mes-
sages to be as small as possible. Bit-oriented protocols reduce the message size by enumer-
ating fields into code values where possible. However, BOPs require that the entire message
always be sent, even if some of the fields are empty. BOPs are also difficult to change and
result in a variety of legacy systems that may not communicate with each other.

DDUs are a concise way of distributing information around the battlefield in a form that
is readily used by computers. Since the updates are keyword-driven, the field names take
up space, which offsets the savings made by not sending all the fields. The binary encoding
schemes proposed here reduce the size of a DDU by a factor of 3 or 4. With a typical size
of only 16-60 bytes (plus overhead required by the FEP), binary database updates may be
transmitted with a minimum of bandwidth. It should be noted, however, that the most
efficient compression algorithms will not allow DDUs to work well over combat net radio
networks if complete audit trails are required. Any interruption of service will result in a
backlog of old updates.

Unlike hardwired formats like bit-oriented messages, most of the encoding is completely
dynamic, with the encoder and decoder knowing very little about the actual database. Any
message system that uses field/value pairs may be encoded with these algorithms. In fact,
a Perl program was written to prove this point. It reads the binary messages and converts
them to SQL (Structured Query Language), the standard database language (Date 1986).
Figure 10 shows an IDT DDU and the corresponding SQL as generated by the decoder.

Messages being exchanged on the battlefield must be both terse and understandable.
The most efficient compression scheme in the world is useless if only certain applications
know how to decode the messages. The method used must be portable, expandable, and
adaptable. On today’s battlefield, interoperability is very important. Stand-alone systems

16



update Q"0x803f5f3c/0x23" grid {east=407945;
north=4368070; time=72; soc_rad=100; usage=-3;
owner=Q"0x803f5f3c/0x5" ; }

update grid

set east=407945,
north=4368070,
time=72,
soc_rad=100,
usage=-3,
owner=0"0x803f5f3c/0x5"

where factid = @"0x803f5f3c/0x23";

Figure 10. IDT DDU Translated Into SQL.

are no longer desirable, not just within one service, but between services as well. Information
about units detected by ground forces must be sent to support aircraft, a nontrivial task
with current legacy systems.

Applications should not rely solely on improved ways to send messages, whether by
sophisticated ‘compression schemes or improved communications hardware. They should
examine the messages they are sending and consider alternatives. Is a verbose text message
required, or can a handful of database updates convey the same information? Should updates
be sent out periodically, or will the use of models reduce bandwidth by limiting the amount
of message traffic? With these thoughts in mind, a binary encoded database update is a
very efficient way of conveying information on the battlefield.
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Appendix:

Combat Vehicle Command and Control (CVC2)
Message Header
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This appendix contains the specification for a combat vehicle command and control
(CVC2) message header. CVC2 was a bit-oriented message protocol precursor of the inter-
vehicular information system (IVIS) and, although newer protocols exist, this example is
sufficient to show how such protocols work. The field types are shown in table A-1. In
table A-2, the start bit is the offset from the beginning of the message to where the field
begins. Field width is the number of bits devoted to this field.

Table A-1. CVC2 Message Header Field Types

enum A list of permitted values are defined, and the field value
is used as an index into that list.

m-enum Several enumerated lists exist and the one used depends
on the value of the previous field. The current field value
is then used as an index into the appropriate list.

na This field is not currently used and is being saved for
future expansion.

num This field is to be interpreted as a integer number.

char This field is to be interpreted as an ASCII character.
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Table A-2. CVC2 Message Header Fields

Start Field Field Field Possible
Bit Type Width Name Values

0 enum 2 "MSG_TYP" "text"
"overlay"
"'spare"
"spare"
2 m_enum 6 ""MES_DESC" "Reserved"
"MOPP Status Alert”
"Air Alert"
"REDCON Alert™
"NBC Alert"
"Warning Order"
"Frago"
"Call For Fire"
"Call For CAS"
"Contact Report"
"Engagement Update"
"Spot Report"
"Situation Report"
"Bridge Report"
"Minefield Laying Report'
"Obstacle Report'
"Route Report"
"Personnel Status"
"Ammo Status Report/Request"
"POL Status Report/Request”
"Vehicle Status"
"NBC 1 Observers Report"
"NBC 4 Contamination Report"
"NBC 5 Contamination Area Report"
"Shell, Bomb, Mortar Report'
"Strikewarn"
"Position Update"
"WILCo"
"Request For Reports"
END
"Reserved"
"Own Current Operations Overlay"
"Own Future Operations Overlay"
"Higher Current Operations Overlay
"Higher Future Operations Overlay"
"Enemy Overlay"
"Enemy Overlay Update"
"Obstacle Overlay"
"Obstacle Overlay Update"
"Fire Support Overlay"
"Fire Support Overlay Update"
"Fire Plan"
"Sector Identification”
END

24



Table A-2. CVC2 Message Header Fields (continued)

Start Field Field Field Possible
Bit Type Width Name Values

8 na 6 "spare"

13 enum 1 "WILCO" "WILCO not required"
"WILCO required"
END

14 enum 2 "POS_REP" "two words"
"three words"
END

16 num 16 "MSG_WORD_CNT" /#* valid 1-7650 */

32 enum 4 “SND UNIT" "Reserved"
"Company A"
"Company B"
"Company C"
"Company D"
"Company E"
"Company F"
"Company G"
"Company H"
"Company I"
"Company J"
"Company K"
"Company L"
"Battalion"
"Adjacent Battalion"
"Brigade"

- END

36 m_enum 2 "SND ELEMENT" /* Company */
"Headquarters"
"Headquarters"
"Front"
"Headquarters'
END
/* Battalion */
"ist Platoon"
"Slice"
'lRearll
"Slice"
END
/* Adjacent Battalion */
"2nd Platoon”
“Admin/Log"
"Left"
"Admin/Log"
END
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Table A-2. CVC2 Message Header Fields (continued)

Start Field Field Field Possible
Bit Type Width Name Values

36 (cont) /* Brigade */
"3rd Platoon"
"spare"

"Right"
"spare"
END

38 m_enum 3 “SND INDIV" /* Company HQ */
"Reserved"

"Co 1st Sgt"
"FIST_V"
"Engineering Squad"
"ADA Squad"

"Co Cmdr"

"Co Exec"

END

/* 1/2/3/PLATOON */
"Reserved"

"Platoon Ldr"
"Wingman A"
"Wingman B"
"Platoon Sgt"
"spare"

"spare"

"spare"

END

/* BN & BDE HQ */
"Reserved"

ll51ll

"52"

"53"

l|s4ll

"Bn Sgt Maj"

"Bn Cmdr"

"Bn Exec"

END

/* BN & BDE SLICE */
"Reserved"

"Attack Helicopter"
"Aviation P1lt"

"Air Defense Arty"
"Heavy Mortar"
"Scout"

"ENGINEER"

"spare"

END
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Table A-2. CVC2 Message Header Fields (continued)

Start Field Field Field Possible
Bit Type Width Name Values

38  (conmt) /* BN ADMIN/LOG */
"Reserved"
"Maintenance"
"Medic"
"Support"
"spare"

"spare"

"spare"

"spare"

END

/* BDE ADMIN/LOG */
"Reserved"
"Maintenance"
"Medical"
"Supply Support"
"Transportation
"Commo Officer”
"spare"

"'spare"

END

41 na 3 "spare"

44 enum 4 "'SND ADD ID" "ys"

"GERMANY"
"UNITED KINGDOM"
"FRANCE"
"NETHERLANDS"
"DENMARK"
"CANADA"
"BELGIUM"

END

48 enum 4 "DST UNIT" "Reserved"
"Company A"
"Company B"
"Company C"
"Company D"
"Company E"
"Company F"
"Company G"
"Company H'"
"Company I"
"Company J"
"Company K"
"Company L"
"Battalion"
"Adjacent Battalion"
"Brigade"

END
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Table A-2. CVC2 Message Header Fields (continued)

Start Field Field Field Possible
Bit Type Width Name Values

52 m_enum 2 "DST ELEMENT" /* Company */
"Headquarters"
"Headquarters"
"Front"
"Headquarters"
END
/* Battalion */
"i{st Platoon"
"Slice"

"Rear"
"Slice"

END

/* Adjacent Battalion */
"2nd Platoon"
"Admin/Log"
"Left"
"Admin/Log"
END

/* Brigade */
"3rd Platoon"
‘'spare"
"Right"
‘'spare"

END

54 m_enum 3 "DST INDIV" /* Company HQ */
"Reserved"

"Co 1st Sgt"
"FIST_V"
"Engineering Squad"
"ADA Squad"

"Co Cmdr"

"Co Exec"

END

/* 1/2/3/PLATOON */
"Reserved"
"Platoon Ldr"
"Wingman A"
"Wingman B"
"Platoon Sgt"
“spare"

"spare"

"spare"

END
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Table A-2. CVC2 Message Header Fields (continued)

Start Field Field Field Possible
Bit Type Width Name ' Values

54 (cont) /* BN & BDE HQ */
"Reserved"
)Isill
"52"
"53"
I|S4H
"Bn Sgt Maj"
"Bn Cmdr"
"Bn Exec"
END
/* BN & BDE SLICE */
"Reserved"
"Attack Helicopter"
"Aviation Plt"
"Air Defense Arty"
"Heavy Mortar"
"Scout"
"ENGINEER"
"spare"
END
/* BN ADMIN/LOG */
"Reserved"
"Maintenance"
"Medic"
"Support"
"spare"
"spare"
"spare"
"spare"
END
/* BDE ADMIN/LOG */
"Reserved"
"Maintenance"
"Medical™
"Supply Support"
"Transportation"
"Commo Officer"
"spare"
"spare"
END

57 na 3 "spare"
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Table A-2. CVC2 Message Header Fields (continued)

Start Field Field Field Possible
Bit Type Width Name Values

60 enum 4 “"SND ADD ID" "gs"
"GERMANY"
"UNITED KINGDOM"
"FRANCE"
"NETHERLANDS"
"DENMARK"
"CANADA™
"BELGIUM"
END

64 na

66 num

72 char

80 char "100KM SQ_COL"

88 char ""100KM SQ_ROW"

96 num 16 "EASTING"

112 num 1 "NORTEING"

128 num "DTG DATE"

133 num “DTG HOUR"

138 num "DTG MINUTE"

144 num "DTG SECOND"

150 enum "DTG MONTH" "spare"
"JANUARY"
"FEBRUARY"
"MARCH"
"“APRIL"
"MAY"
"JUNE"
"JULY"
"AUGUST"
"SEPTEMBER"
"OCTOBER"
"NOVEMBER"
"DECEMBER"
"spare"
END

155 enum 5 “DTG TIME ZONE" "spare"
"ALPHA"
"BRAVO"
“CHARLIE"
"DELTA"
"ECHO"
"FOXTROT"
"GOLF"
"HOTEL"
"JULIET"
"KILO"

llsparell
"SND_GZN"
"SND_GZL"

0 0 00 & N

[e2 B o> I e ) T ¢ B¢ 4 B e )
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Table A-2. CVC2 Message Header Fields (continued)

Start Field Field Field Possible
Bit Type Width Name Values

186 (cont) "LIMA"
"MIKE"
"NOVEMBER"
"PAPA"
"QUEBEC"
"ROMEO"
"SIERRA"
"TANGO"
"UNIFORM"
"VICTOR"
"WHISKEY"
"X-RAY"
"YANKEE"
"ZUuLu"
"LOCAL"
"spare"
END
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